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Numerical Solution of Ordinary Differential Equations 

 
Differential Equations (DE) 
Most of the real time physical systems are expressed in terms of rate of change. The 
Mathematical models that describe the state of such systems are often expressed in 
terms of not only certain system parameters but also their derivatives. Such model 
which contains functions and one or more of its derivatives is known as 
differential equation (DE). Each of the following equations are DE since they contain the 
derivative(s) of an unknown function y (a function of x) or z (a function of x and y). 
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Types of Differential Equations: 
 
1) Ordinary Differential Equations 
The equation which involves one or more ordinary derivatives of unknown of any order is 
called Ordinary Differential Equation (ODE). 
 
Examples ODE are: 
a) Law of Cooling: dT(t)/dx = K[Ts-T(t)] : The rate of loss of heat from a liquid is 
proportional to the difference of temperature between the liquid and the surroundings. 
 
b) Law of Motion: mdv(t)/dt = F : The time rate change of velocity of a moving body is 
proportion to the force exerted by the body. 
 
c) Kirchhoff’s Law for and Electric Circuit: L di/dt = iR = V: The voltage across an 
electric circuit containing an inductance L and a resistance R.  
 
The general form of the ordinary differential equation is: F (x, y, y’, y’’, … yn) = 0. 
Where, ‘x’ is independent variable, y is dependent and y’, y’’ … are derivatives of ‘y’ 
with respect to ‘x’. 
 
2) Partial Differential Equations  
The equation which contains more than one independent variables, dependent variables 
and its partial derivative is called Partial Differential Equation (PDE).  
 



CSE2201: Numerical Methods 

Page 2 of 11 

 
Examples of PDE are: 
a) Heat Flow in a Rectangular Plate:   
 

��� 

���    + 
��� 

���  = �(�, �) 

 
 
Order and Degree of a Differential Equation 
 
The order of a differential equation is its highest derivative. If the equation only contains 
a first derivative, it is called a differential equation of the first order. By derivative order 
we mean how many times the function was differentiated. 

 A first order DE can be expressed in the form 
dx

dy
 = f (x, y) and a second order DE can 

be expressed in the form y’’ = f (x, y, y’). 
Example:   

dx

dy
+ 3y = 2-----------------------------------------------(1) 

Equation (1) has only first derivatives  
��

��
 so it is first order derivatives. 

 

(
dx

dy
) 2  + 2 y2 = 4(

dx

dy
) + 2x ------------------------------(2) 

Equation (2) has second derivatives 
��� 

���
 so it is second order derivatives. 

 
 
The degree is the exponent of the highest derivatives. 
Example: 
 

 

(
dx

dy
) 2  + 2 y2 = 4(

dx

dy
) + 2x ------------------------------(2) 

              Equation (2) has highest derivative of dy/dx, and it has an exponent of    

   2, so this is "Second Degree" 

. 
 
 
Linear and Nonlinear Differential Equation 
A DE is known as a linear DE when it does not contain terms involving the products of the 
dependent variable or its derivatives. For example, y’’ + 3y’ = 2y + x2 is a second order, 
linear DE. The equations i) y’’ + (y’) 2 = 1 ii) y’ = -ay2 are nonlinear because the first one 
contains a product of y’ and the second contains a product of y. 
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General and Exact Solution of DE 
A solution to a DE is a relationship between the dependent and independent variable that 
satisfy the DE. For example, y = 3x2 + x is the solution of y’ = 6x + 1. Also, y = 3x2+x+2 
is a solution of y’ = 6x + 1. Actually, there is infinite number of solutions. In general, y’ = 
6x + 1 has a solution of the form y = 3x2 + x + c where c is known as the constant of 
integration. The solution that contains arbitrary constants is not unique and is therefore 
known as the general solution. If the values of the constants are known, on substitution of 
these values in the general solution, a unique solution known as exact solution can be 
obtained. 
 
Initial Conditions 
In order to obtain the values of the integration constants, we need additional information. 
If the order of the equation is n, we will have to obtain n constants and, therefore, we need 
n conditions in order to obtain an exact solution. These conditions are called initial 
conditions. For example, if the initial condition is y (0) = 2 then c = 2 and hence y = 3x2 + 
x + 2 is the exact solution of y’ = 6x + 1. 
 
Initial Value & Boundary Value Problem 
When all the conditions are specified at a particular value of the independent variable x, 
then the problem is called an initial value problem. If the initial conditions are specified at 
different values of the independent variable, then such problem is called boundary value 
problem. 
 
Taylor’s Series Method to solve ODE 
 
Let y = f (x), be a solution of the equation 

 
dx

dy
 = f (x, y) where y (x0) =  y0 

 Expanding the Taylor’s series about the point x0, we get 

 f (x) = f (x0 ) + 
!1

)( 0xx 
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Putting x = x1 = x0 + h, we get 

 y1 = f (x1) = y0 + 
!1

h
 y0

’
 + 

!2

2h
 y0

’’
 + 

!3

3h
 y0

’’’
 + ….. 

where h = x1 − x0.  

Similarly, 

 yn+1 = yn + 
!1

h
 yn

’
 + 

!2

2h
 yn

’’
 + 

!3

3h
 yn

’’’
 + ….. 

The above formula is known as Taylor’s series method. 
 



CSE2201: Numerical Methods 

Page 4 of 11 

 The major problem with the Taylor’s series method is the evaluation of higher-order 
derivatives. They become very complicated. This method is, therefore, generally 
impractical from a computational point of view. However, it illustrate the basic 
approach to numerical solution of DE. 

 

Example: Solve 
dx

dy
 = x + y, y (1) = 0, numerically up to x = 1.2, with h = 0.1. 

Solution: Here we have x0 = 1, y0 = 0 and 

dx

dy
 = y’ = x + y    y0

’
 = 1 + 0 = 1 

 y’’ = 1 + y’    y0
’’

 = 1 + 1 = 2 
 y’’’ = y’’    y0

’’’
 = 2 

 y iv  = y’’’    yiv = 2 
 
Substitute the above values in the Taylor’s series method, 

 y1 = y0 + 
!1

h
 y0

’
 + 

!2

2h
 y0’’ + 

!3

3h
 y0’’’ + 

!4

4h
 y0

iv
 + …..    

     = 0 + 0.1/1 * 1 + (0.1)2 /2 * 2 + (0.1)3 /6 * 2 + (0.1)4 /24 * 2 + ….. 
                = 0.11033846 
        y1 = y (1.1) ≈ 0.110 
 
Now, x1 = x0 + h = 1 + 0.1 = 1.1 and y1 = 0.11 
We have, 
 y1

’
 = x1 + y1 = 1.1 + 0.11 = 1.21 

 y1’’ = 1 + y1’ = 1 + 1.21 = 2.21 
 y1’’’ = y1’’ = 2.21 
 y1 iv  = y1’’’  = 2.21 
Substitute the above values in the Taylor’s series method, 

 y2 = y0 + 
!1

h
 y1’ + 

!2

2h
 y1’’ + 

!3

3h
 y1’’’ + 

!4

4h
 y1

iv + …..   

     = 0.11 + 0.1/1 * 1.21 + (0.1)2 /2 * 2.21 + (0.1)3 /6 * 2.21 + (0.1)4 /24 * 2.21 
                = 0.232 (approximately) 
        y2 = y (1.2) ≈ 0.232 
 
 
One Step and Multi Step Method of Solution: 
In one step methods, we use information from only one preceding point, i.e. to 
estimate the value of yi, we need the conditions at the previous point yi-1 only. 
Multistep methods use information at two or more previous steps to estimate a 
value. 
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Euler’s Method 
 
The solution of differential equation by Taylor’s Series Method gives the equation in 
the form of power series. We will now discuss the methods which give the solution in 
the form of a set of tabulated values. Euler’s Method is one of the simplest one-step 
methods and it has limited application because of its low accuracy. 
Eular’s method is a numerical technique that solve ordinary differential equations in the 

form of : 
  ��

 ��
 =�(�, �), �(0) = �0 

 
 
 

 
 
Only first order derivatives can be solved by Euler’s Methods. 
 
Derivation of Eular’s Methods: 
 
Consider the Taylor’s series method 

 y (x ) = y (x0 ) + 
!1

)( 0xx 
 y‘(x0) + 

2

0

!2

)( xx 
y‘’(x0) + . . . . . +  

n

n

xx

!

)( 0
yn (x0) 

Taking the first two terms, 
 y (x ) = y (x0 ) + ( x − x0 ) y‘(x0) 
 
Given the Differential Equation  
 y’ (x0 ) = f ( x , y ) with  y(x0) = y0 

 

 We have, 
 y’ (x0 ) = f (x0 , y0 ) 
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 f (x0 , y0 ) = 
�(�)��(��)

����
 

  y (x ) = y (x0 ) + ( x - x0 ) f (x0, y0 ) 
Then, the value of y(x) at x = x1 is given by 

 y (x1) = y (x0 ) + (x1 − x0 ) f (x0, y0 ) 
 
Letting step size h = x1 − x0, we obtain 
 y1 = y0 + h f (x0, y0 ) 
 
Similarly, 
 y2 = y1 + h f (x1, y1 ) 
In general form, 
 yi +1 = yi + h f (xi, yi ) ---------------------------------------------------------------------(1) 
 
The above formula is known as Euler’s method and can be used recursively to evaluate y1, 
y2, …. of y(x1), y(x2), … starting from the initial condition y0 = y(x0). 
 
 Euler’s method is the simplest method and has a limited application because of its low 

accuracy. 
 In this method the new value is obtained by extrapolating linearly over the step size h 

using the slope at its previous value i.e. New value = Old value + Slope * Step size. 
 

Example: Solve the equation 
dx

dy
 = 1 – y, with the initial condition x = 0, y = 0, using 

Euler’s method and tabulate the solutions at x = 0.1, 0.2, 0.3 
 
Solution: Here, f ( x, y ) = 1 – y 
Here, 
 h = 0.1 
 x0 = 0 , y0 = 0 
 x1 = x0 + h = 0 + 0.1 = 0.1 
 x2  = 0.2 
 x3 = 0.3 
 
Taking n = 0 in  
  yn+1 = yn  + h f (xn , yn ) 
We get, 
 y1 = y0 + h f (x0, y0 ) 
     = 0 + (0.1) (1 – 0 ) 
     = 0.1 
Now,  y2 = y1 + h f (x1, y1 ) 
     = 0.1 + (0.1) (1 – 0.1) 
     = 0.19 
 y3 = y2 + h f (x2, y2 ) 
     = 0.19 + (0.1) (1 – 0.19) 
     = 0.271 
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Example: Use Euler’s Method with h=0.1 to solve 
  ��

 ��
  = x2 + y2 with y(0) = 0 in the range 

0<=x<=0.05 
 
Solution:  
Here, f (x, y) = x2 + y2  
x0 = 0  
y0 = 0 
 
Taking n = 0 in  
  yn+1 = yn  + h f (xn , yn ) 
We get, 
 y1 = y0 + h f (x0, y0 ) 
     = 0 + 0.1 (x0

2 + y0
2) = 0 + (0.1) (0 + 0 ) 

     = 0 
Now,  y2 = y1 + h f (x1, y1) 
     = 0 + (0.1) ((0.1)2 + 0) 
     = 0.001 
 
 y3 = y2 + h f (x2, y2) 
     = 0.001 + (0.1) ((0.2)2 + (0.001)2) 
     = 0.005 
             
           y4 = y3+ h f (x3, y3) 
     = 0.005 + (0.1) ((0.3)2 + (0.005)2) 
     = 0.014 
       
            y5 = y4+ h f (x4, y4) 
     = 0.014 + (0.1) ((0.4)2 + (0.014)2) 
     = 0.03002 
So,  

y(0) = 0  
y(0.3) = 0.005  

y(0.1) = 0
y(0.4) = 0.014 

y(0.2) = 0.001 
y(0.5) = 0.0300196. 

 
 
Error Analysis of Euler’s Methods 
The numerical solution for ODEs involves two types of truncation errors: 

1. Local Truncation Error: Results from an application of the method in question 
over a single step.  

2. Propagated Truncation Error: Results from the approximations produced during 
previous step. 

3. Local Truncation Error + Propagated Truncation Error = Global Truncation Error 
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Error analysis of Euler’s methods can be derived from Taylor’s series. 

Consider, 
  ��

 ��
 =�(�, �) =  ��, ---------------------------------------------------------------(2) 

where x is independent and y is dependent variables. 
Equation 2 can be represented by Taylor series Expansion about a stating value (xi, yi) 
 

yi+1 = yi + 
!1

h
 yi

’
 + 

!2

2h
 yi

’’
 + 

!3

3h
 yi

’’’
 + …..+ 

!n

hn

 yi
n + Rn -------------------------------------(3) 

 

Where, h = xi+1 − xi and Rn = 
����  

(���)!
 (�)= the reminder term, -------------------------------(4) 

where  � is in between xi+1 and xi.  
 
Substituting Equation 2 and 4 into equation 3 we get, 

yi+1 = yi +�(xi, yi) h + 
��

�!
(xi, yi) h2 + ----------------+  

����

�!
(xi, yi) hn + O(h(n+1))---------(5) 

 
O(h(n+1)) is local truncation error and proportional to step size raised to the power  
(n + 1)th  power. 
 
yi +1 = yi + h f (xi, yi ) ---------------------------------------------------------------------(1) 
 
Subtracting equation 1 with equation 5, we get: 

Local Truncation error = Et = 
��

�!
(xi, yi) h2 + -----------------------------+ O(h(n+1)---------(6) 

 
For small h we can ignore the O(h(n+1)) as error decreases with order increases. 
 

Ea = 
��

�!
(xi, yi) h2 

 
Or, Ea = O(h2), Ea is approximate local truncation error. 
 
 
 
Heun’s method 
Since, Euler’s Method does not require any differentiation and is easy to implement on 
computers. However, it major weakness is large truncation errors. This is due to its 
linear characteristic because it uses only the first two terms of the Taylor’s Series. So 
Heun’s Method is considered to be an improvement to Euler’s Method. 
 
Huen’s Methods works as Predictor Corrector Approach. The basic principle of Predictor 
Corrector Approach is: 
 

1. Predict a solution of given ODE 
2. Correct the predictor equation 
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yi+1 = yi + ((m1+ m2)/2)h 

 

 
 

Fig 1: Illustration of Huen’s Method 
 
 
Derivation of Heun’s Method: 
 
In Euler’s method, the slope at the beginning of the interval is used to extrapolate yi to yi+1 
over the entire interval. Thus, yi+1 = yi + m1 h where m1 is the slope at (xi, yi). As shown in 
following Fig 1, yi+1 is clearly an underestimate of y (xi+1). This approach is known as 
predictor approach. 
                                                                                                     
                                       yi+1 = yi + m1 h                                         Predictor Equation 
                         
                                          
An alternative is to use the line which is parallel to the tangent at this point (xi+1, y (xi+1)) 
to extrapolate from yi to yi+1, as shown in Fig 1. i.e. yi+1 = yi + m2h where m2 is the slope 
at (xi+1, y (xi+1)). Note that the estimate appears to be overestimated. 
 
A third approach is to use a line whose slope is the average of the slopes at the end points 
of the interval. Then yi+1 = yi + ((m1+ m2)/2)h. As shown in Fig, this gives a better 
approximation to yi+1. This approach is known as Corrector Approach. 
 
 
 
 
                                                                                                         Corrector Equation  
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The formula for implementing Heun’s method can be constructed easily. Given the 
equation, y’ (x) = f (x, y), we can obtain 
  m1 = y’ (xi) = f (xi, yi) 
  m2 = y’ (xi+1) = f (xi+1, yi+1) 
therefore,  m  =   (f (xi, yi) + f (xi+1, yi+1)) / 2 
So,  yi+1 = yi + h/2 [f (xi, yi) + f (xi+1, yi+1)] ……. (1) 
 
But the term yi+1 appears on both sides of Eq. (1) and therefore, yi+1 cannot be evaluated 
until the value of yi+1 inside the function f (xi+1, yi+1) is available. This value can be 
predicted using the Euler’s formula as yi + 1 = yi + h f (xi, yi ). 
 
Then Heun’s formula becomes 
 yi+1 = yi + ((m1+ m2)/2)h 
       = yi + h/2(m1+ m2) 
       = yi + h/2 [f (xi, yi) + f (xi+1, y(i + 1))] 
                  = yi + h/2 [f (xi, yi) + f (xi+1, yi + h f (xi, yi ))] 
where, 
 m1  = f (xi, yi) 
 m2  = f (xi+1, yi+1) 
 y(i + 1) = yi + h f (xi, yi ) 
 
 
Example 13.6: Given the equation y’(x) = 2y/x with y(1) = 2. Estimate y(2)  using Heun’s 
method , using h = 0.25. 
Solution: 
Iteration 1 

 m1  = 
1

22
= 4 

 ye(1.25) = 2 + 0.25(4.0) = 3.0 

 m2  = 
25.1

0.32
= 4.8 

 y(1.25) = 2 + 
2

25.0
(4.0 + 4.8) = 3.1 

Iteration 2 

 m1  = 
25.1

1.32
= 4.96 

 ye(1.5) = 3.1 + 0.25(4.96) = 4.34 

 m2  = 
5.1

34.42
= 5.79 

 y(1.5) = 3.1 + 
2

25.0
(4.96 + 5.79) = 4.44 

continue….. 
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Example:  
��

��
= 3��� − 0.4�  y(0) = 5 find y(3)for step size h = 1.5 using Heun’s method. 

 
Solution: 
According to Huen’s method, 
yi+1 = yi + (m1+m2)/2 *h 
m1 = f (xi, yi) 
m2  = f (xi+1, yi+1) 
 
Iteration i = 0 
Here, y0 = 5 and x0 = 0 and h=1.5 
m1 = f (x0, y0) = f (0, 5) =  3��� − 0.4(5) = 1 
m2 = f (x0 + h, y0 + h) = f (0+1.5, 5+1*1.5) ; y0 + h = y0  + m1*h (Euler’s Method) 
      = f (1.5, 6.5) = 3���.� − 0.4(6.5) =− 1.9306 
y1 = y0 + (m1+m2)/2 *h = 5+ (1 + (− 1.9306))/2 *1.5 = 4.302 ≈ �(1.5) 
 
Iteration i = 1 
Here, y1 = 4.302 and x1 = 1.5 and h=3 
m1 = f (x1, y1) = f (1.5, 4.302) =  3���.� − 0.4(4.302) = − 1.0519 
m2 = f (x1 + h, y1 + h) = f (1.5+1.5, 4.302+(− 1.0519)*1.5) ; y1 + h = y1  + m1*h  
      = f (3, 2.726) = 3��� − 0.4(2.726) = − 0.9406 
y2 = y1 + (m1+m2)/2 *h = 4.302+ ((− 1.0519) + − 0.9406))/2 *1.5 = 2.763 ≈ �(3) 
 
Heun’s method is a second order Runge-Kutta method because it employs slopes at 
two end points of the interval 
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